
Status of Simulations for Advanced Compton Telescopes

R. Marc Kippen UAH / NSSTC

Outline

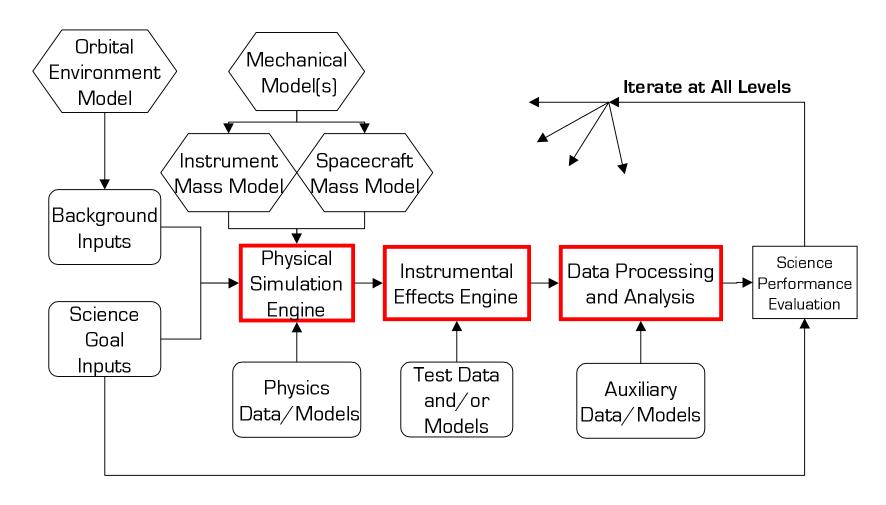
- 1. The role of simulation
- 2. Past accomplishments

- 3. Current Status
- 4. Future goals & requirements

The Role of Simulation

Primary Uses

- 1. Early development of instrument concepts
 - Primarily physical simulation studies with crude detector assumptions
- 2. Development and optimization of engineering systems concepts
 - Physical simulation + engineering simulations
- 3. Demonstrate instrument + Eng. system performance
 - * "End-to-end" performance demonstration
- 4. Detailed characterization of instrument response for use in flight analysis


Benefits

- Cost-effective means for making quantitative comparisons between different concepts and configurations
- 2. Early identification of instrument design reduces mission technical risk
- 3. Early identification and verification of scientific objectives enhances mission/proposal credibility
- Provides a crucial test-bed for the development of data processing and analysis algorithms/systems
- Often the only viable means of evaluating detailed instrument performance for varied conditions

Instrument Simulation Framework

Credible Simulation Requires Credible Inputs at All Levels

R. M. Kippen [UAH/NSSTC] ACT Workchop || 3 April, 2001 - 3 -

Compton Telescope Simulation Requirements

* Physical simulation (gammas)

- Need full EM physics in the ~1 keV-50
 MeV regime
- Compton scattering, including Doppler broadening and polarization
- Sensitive to geometry of active and passive telescope materials

Physical simulation (background)

- Hadronic cascades, spallation, isotope production, radioactive decay
- Time-dependent buildup & decay
- Background environment models
- Sensitive to geometry of active and passive telescope materials

* Instrumental effects — Appl. specific

- Non-ideal resolution, thresholds, noise, cross-talk, etc.
- Hardware triggers, event selection, coinc/anit-coinc, etc.

Low-level analysis ("reconstruction")

- Distinguish one or more different event types
- * Single Compton, multiple Compton, electron tracks, pair tracks
- Kinematic event reconstruction of energy and direction (and polarization)
- Background rejection techniques and data selections/cuts

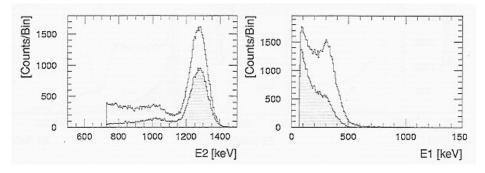
High-level analysis ("imaging")

- Extremely large data space makes "binning" impractical
- Instrument response difficult (or impossible) to fully characterize
- Many different data types with different response characteristics

R. M. Kippen (UAH/NSSTC) ACT Workchop | 3 April, 2001 - 4 -


Past Accomplishments

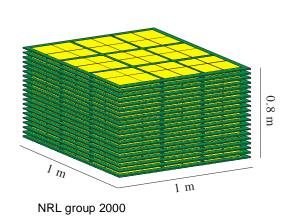
- * CGRO-COMPTEL (1991-2000)
- * Physical simulation
 - * EM physics only
 - * Spacecraft not included in model
- * Response/Imaging
 - * 3D binned dataspace; approximations for energy & angular dependence; deconvolution using Max. Likelihood, Max. Entropy, etc.

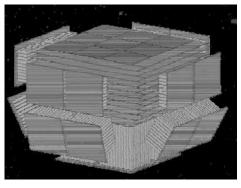

$\overline{\varphi}$ (χ', ψ')

Background simulation

- Identify candidate sources (lines)
- * Simulate particular sources
- Empirical fit to data + growth curves

²²Na simulation (two-photon decay of Al)



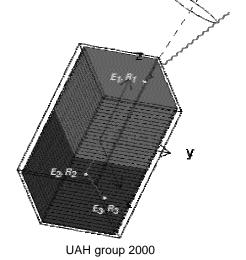


Current Status — Simulation Efforts

- Improved EM physics (Doppler broadening, polarization)
- Kinematic reconstruction of multiple Compton scatter events
- * Electron and pair tracking
- * Background simulation efforts

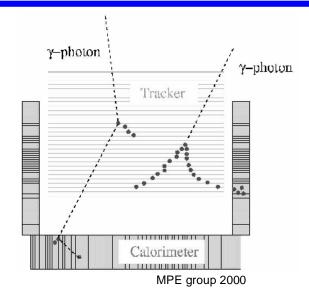
Image deconvolution efforts

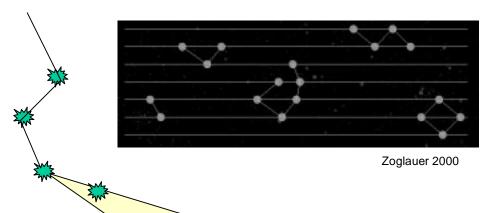




MPE group 2000

Southampton group 2000

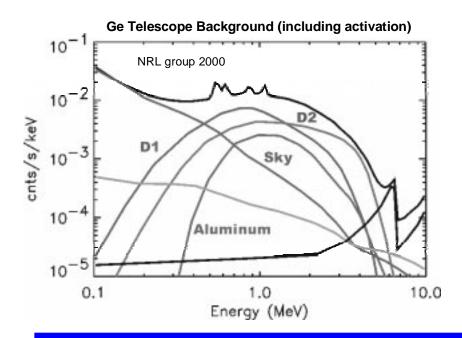



Current Status — Reconstruction Algorithms

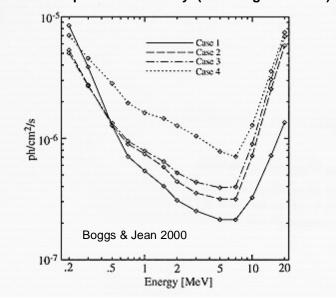
- Multi-Compton technique total energy deposition (e.g., Kamae et al.; Aprile et al.)
- ★ 3-Compton technique partial energy deposition (NRL)
- * Electron tracking (UCR & MPE)
- * Pair tracking (UCR & MPE)

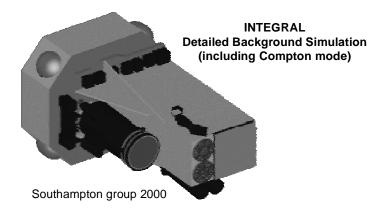
Difficulties:

- * Optimized sequence identification
- * Doppler broadening at low-E
- Distinguishing Compton events from electron tracks
- * Application-specific "expert systems" approach; no general treatments



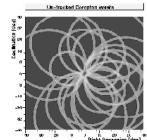
R. M. Kippen [UAH/NSSTC] ACT Workchop | 3 April, 2001 - 7 -

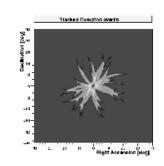


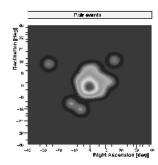

Current Status — Background Simulations

- Background simulations lag behind gamma simulations
- Many empirical estimates, scaling from balloon flights & COMPTEL
- * Few detailed (hadronic+decay)
 cases, typically with simple mass
 models

Ge Telescope Line Sensitivity (including activation)

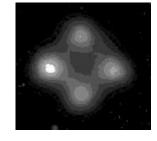


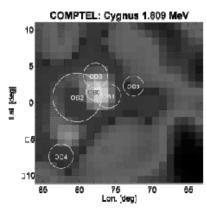


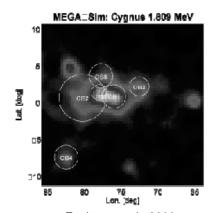

Current Status — Imaging

★ General problems

- fine position and energy resolution result in too many pixels to handle in a binned dataspace
- Many different event types with unique response properties
- * Back-projection loses information




* Potential solution


- List mode imaging where each photon carries the dataspace
- Maximum Likelihood Expectation Maximization (e.g., Barrett et al. 1997; Wilderman et al. 1998; Zoglauer 1999)

* Drawbacks

 Requires knowledge of response and background for each photon

Zoglauer et al. 2000

Summary of Future Needs

* Simulation framework

- Unified framework incorporating science inputs, physical simulation, instrumental effects & analysis not practical given current funding
- Unification of some aspects is needed

Physical simulation

- Currently using several different MC packages (EGS, GEANT, MCNP)
- Single Monte Carlo package to handle all requisite source & background physics is in sight: GEANT4
- Mass model CAD translation tools are sorely lacking
- Input background models in some areas need to be refined
- Techniques for handling "rare" background lines are needed

* Event reconstruction

- More work on general methods for reconstruction of arbitrary event types (neural nets, data fusion; Al?)
- More work on polarization
- Electron tracking: take advantage of GLAST work?
- More work on algorithms to reduce background

Imaging

- Current ML-EM does not handle background
- More work on adapting traditional likelihood methods
- Simplified response representations

Simulations Breakout Discussion

***** 1:30 - 3:30

- Suggested topics:
 - * Simulation group status reports
 - ★ GEANT4 status
 - * Radioactive decay module
 - * Geometry & CAD interfaces
 - * Event reconstruction status reports and discussion
 - Imaging status reports and discussion
 - * Summarize for panel discussion

Advanced Compton Telescope
Simulation Site

http://gammaray.msfc.nasa.gov/actsim/actsim@bbking.msfc.nasa.gov